

Lighting Technology for Active Safety

"See and be seen"

Day

Recognition by other road users

Allow estimation of speed / distance

Night

Good light distribution

Optimum range

Resolution for risk identification

Minimum glare

Xenon Headlamps (High Intensity Discharge) Comparision

Xenon Headlamps

luminous flux (2-2,5 times more)

illumination

Better uniformity Increased range

light color

Similar to daylight 4200K Less tiring

Ж

constant power output

Less variation

perception of colors

True colors

safety / comfort Improvement

field of view extended higher attention level

life time (bulb)

corresponds to life of the bike

power consumption

30% less electrical consumption fuel savings

Tire Pressure Monitoring (RDC) "Maintain Stability"

Correct tire pressure is crucial!

The BMW Tire Pressure Monitoring system (RDC) provides reliable information on the current tire pressure.

Significant pressure loss: a yellow or red lamp warning

Tire Pressure Monitoring (RDC) Top View

RDC

Information / Warnings

Information

tire pressure values front/rear indicated

Warning

Incorrect tire pressure - value is blinking -

Alert

Incorrect tire pressure - value is blinking -

The new Integral ABS Evolution of ABS.

The new Integral ABS Development of Integral ABS.

Development targets of Integral ABS

- Shorter stopping distance.
- Excellent response.
- Simplification of system architecture.
- Optimum distribution of brake forces on front and rear wheel.
- Load condition taken into account.
- Improvement of brake feel.
- Weight reduction.
- Complete self-diagnosis.
- Easy to operate.

The new Integral ABS Development

- Further development of ABS valve systems in the automotive sector enables use in motorcycles with integral function.
- Valve systems are a compact unit.
- Simplification of system architecture.
- Integral ABS, derived from automotive Electronic Stability Control, provides the possibility for interfacing with other driving dynamics control systems.

The new Integral ABS Components

Pressure modulator.

The new Integral ABS Hydraulic circuit

Front brake circuit

Hydraulic circuit

Front brake circuit

Rear brake circuit

The new Integral ABS Hydraulic circuit

Rider applies front brake

Hydraulic circuit

Rider applies front brake / Active pressure build-up on rear

Hydraulic circuit

The new Integral ABS Hydraulic circuit

ABS control on front wheel

Hydraulic circuit

The new Integral ABS Main features of Integral ABS.

Concept

- Significantly improved brake feel since there is no brake boost function.
- Improvement of brake performance when maneuvering (ignition off).
- Improved feedback on ABS braking due to analog valves.
- Weight 2.3 kg (5 lbs.).
- Low power input and power requirement.
- Maintenance same as without ABS.

The new Integral ABS Main features of Integral ABS.

Function

- Improved use of road surface traction, especially when it changes suddenly.
- Optimized detection and control of rear wheel lift-off.
- Rapid adaptation of optimum brake force distribution to load conditions.
- Extended diagnosis function and system monitoring.
- Data provision by Integral ABS for ASC.
- Can be deactivated for off-road use.

Integral function – brake force distribution.

Braking when leaning

Kamm's circle - front wheel

Without integral function, only front brake

Integral function – brake force distribution.

Braking when leaning

Kamm's circle - front wheel

The new Integral ABS

Integral function – brake force distribution.

Avoid: increased leaning position requirement

The new Integral ABS Integral function

Stopping the vehicle on a slope without Integral function

Motorcycle can slip back with locked front wheel.

Integral function - braking on a gradient.

Stopping the vehicle on a slope with Integral function

Motorcycle can be held safely on the slope.

Lift-off detection of Integral ABS.

Lift-off control

- Rear wheel lift-off is detected by comparing wheel speeds and pressure in the rear wheel circuit.
- When lift-off is detected, brake pressure in front wheel must be reduced.
- This provides stabilization.

The new Integral ABS Complete self-diagnosis of Integral ABS.

Diagnosis capability

- Self-diagnosis of entire system on system start.
- Continuous self-diagnosis while traveling.
- Constant checking of plausibility for sensor signals.

The new Integral ABS

Complete self-diagnosis of Integral ABS.

Diagnosis capability

- In the event of electrical or electronic failure, control valves are mechanically returned to base position.
- Differentiated deactivation of ABS function and/or integral function.
- Visual display of system failure.
- Immediate direct hydraulic connection between operating function and brake caliper (as for conventional brake system).

Four Wheel vs. Two Wheel Stability Control

Four wheel stability control on automobiles:

 During hard steering or when sliding, 1 front and 1 rear brake are applied (e.g. LF/RR or RF/LR)

Two wheel stability control on motorcycles:

 During hard acceleration, before excessive tire slip, engine power is reduced

ASC by BMW Motorrad.

Motivation for ASC (Automatic Stability Control)

- Tires can only transfer drive torque within physical limits.
- Transferable forces heavily dependent on road surface and environmental conditions (dirt, water, leaves, etc.).
- Riding stability is negatively influenced if there is too much slip.

ASC by BMW Motorrad. Development of ASC.

Development targets of ASC

- Increase of driving stability.
- Contribution to an increase in active safety.
- Supports rider in accelerating on surfaces which are difficult to estimate or slippery.
- To counteract a rising front wheel when accelerating.

ASC by BMW Motorrad.

Development of ASC.

ASC has not been conceived

- to achieve the maximum possible acceleration.
- for extreme acceleration from an extreme banking position.

ASC cannot extend the physical stability limits of a single-track vehicle.

ASC by BMW Motorrad.

System description ASC.

ASC by BMW Motorrad. System description ASC.

Function ASC

- ABS sensors detect wheel rotation speeds.
- Comparison of wheel rotational speeds gives drive slip.
- If slip is too great, engine torque is limited by engine management system.
- Designed for public road conditions.
- Off-road settings can be activated for off-road use.
- Can be deactivated for sports use.

ASC by BMW Motorrad.

System description ASC.

Torque management

- Torque reduction by adjustment of ignition timing.
- If higher degree of control is required, fuel injection is suppressed.

ASC by BMW Motorrad.

Operation and display of ASC.

ASC switch on/off

ASC display in instrument panel

Display symbols:

